

• Morphisms can be viewed as retracts
in the category of morphisms
For a class of morphisms
$$F$$
 in C ,
- stable under retracts
b retracts of things in F as in F
- stable under pushours
 $X \longrightarrow X'$
 $f \downarrow f^{(p)} \downarrow f'$
 $Y \longrightarrow Y'$
b f in $F \Rightarrow f' n F$
- stable under transfuste completion
 $\cdot I$
 $-a$ well oraged set, initial element O
 $\cdot X: I \rightarrow Z$
 $-functor st lim $X(j)$ representable
 $j < i$ for all nonzero
 $i \in I$
and
 $\lim_{j < i} X(j) \longrightarrow X(i)$
 $j < i$$

	Stable under transfinite compositions
	means
	Rim X Lii
	Lim X Li) ieI
	exists and the canonical
	XLO) EF <u>em</u> XLO) itz
	iet
	Caturated
Prop 2.1.4	nice things happen if LLF) is saturated
Prop	Retract lemma.
2.1.5	x = x
	"fhas LLP wrt p this KLI writ L
	=) f is retract of i'' => f is a retract of p
	 Saturated Stable under · retracts purhouss transfinite compositions nice things happen if LLF) is saturated

$$\begin{bmatrix} 0 & A & \text{small corresponse} \\ 2.1.10 & I & \text{small set of morphisms of preshouses} \\ over A & \text{over } A$$

2.2 Model Lategorias

Def 2.2.1

A model category L is a locally small category w/ 3 classes of morphisms W - "weak equivalences" Fib - "fibrations" Cofib - "cofibrations" St 1. C has finite limits and colimits 2. W satisfies "2 out of 3" property х <u>-</u> У n z z z 3. Both (Cof, Fibnw) (LOFNW, FID) are WFs's. - "trivial / acyclic fibrations" - "trivial / acyclic cofibrations" Fibnw COFIDAW $X \in Obj(\mathcal{L})$ is fibrant if $X \longrightarrow e$ is in Fib t final object similarly, is cofibrant 11 Ø→X R m Lofib

RmŁ	Weak equivalences are really the core of
	the theory.
	0
	Fib/(ofib are like tools that, when they exist, can help us study WEs.
Еx	
Ex 2·2·9	Any appropriate category, taking W to be isomorphisms
٤x	A for a small entergony A
2.2.5	W= all morphisms
	Cofib = monomorphisms
٤×	Top, where W = weak homotopy equivalence Fib = Serve fibrations
	Cofib = retract of relative cell Complexes
Pan f	The following constructions preserve the model
2.2.6	Structure:
	$-\ell \rightarrow \ell^{\circ P}$
	- for X + Obj(e), e/x

We could ask how these 3 classes are related. - If a functor does something to one class, do we know what it does to the others? Pros Ken Brown's lemma 1.2.7 $F: \mathcal{L} \longrightarrow \mathcal{D}$ model] [has a class of weak equivalences Category If F(Cotion W) C W (*) ⇒ F(w) cw * In Pact, if F(cotion w between colibrant objects) C W => FLW) CW Let W be a class of morphisms in C. Def Localization (of l by w) is a functor 228 ril - ho(2) · Universal one that sends W to isomorphisms

Prop
1.2.9 There always exists a localization of
$$\ell$$

2.2.9 by any class W
• We can strengthen the universal property: Pick
 Y'' : Hom (no(ℓ), D) \rightarrow Hom w (ℓ , D)
is not simply an equivalence ℓ faugues sording
al categories, but an Bonnopulson.
Construction ho(ℓ)
- Objects are same as ℓ
- Morphisms and diagrams of the form
 X_1
 X_2
 X_2
 X_{n-1}
 X_{n+1} , Y
 X_2
 X_{n-1} , X_{n+1} , Y
 X_1
 X_2
 X_{n-1} , X_{n+1} , Y
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_{n-1} , X_n
 X_1
 X_2
 X_1
 X_2
 X_{n-1} , X_n
 X_1
 X_2
 X_2
 X_1
 X_2
 X_2
 X_1
 X_2
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_2
 X_1
 X_1
 X_1
 X_1
 X_2
 X_1
 X_1

Fix a model category
$$\mathcal{E}$$
.
Del
a.b.11
 $A \sqcup A \stackrel{(a_1,3)}{\longrightarrow} \stackrel{c}{\square} \stackrel{c}{$

Lemma 2.2.13	left (right) homotopy is an equivalence relation. Ly A confibrant, Write
	Write X Irbrant
	[A,X] = Home (A,X) /~
	· Left homotopy is compatible vol composition on the left:
	$z \xrightarrow{1} A \xrightarrow{1} b$
	9. 1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	a, 1 , x
	$z \longrightarrow A \longrightarrow F_1$
	right homotopy compatible on the night
	$\sim 1 [-, -]: \ \mathcal{C}_{c}^{op} \times \mathcal{C}_{f} \longrightarrow \text{Set}$
Thm	
2.2.15	ho(Cc) ~ ho(C) (equivalence of categories)
	holle) ~ holl)
yar	There is a natural extension of the functor
2.2.16	
	$[-,-]: \mathcal{L}_{L}^{op} \times \mathcal{L}_{f} \longrightarrow Set$
	to
	[-,-]: hollip) × hollip) -> Set

Thm 2.2.17	Recall, for Ack and Xile,
[[A,X] = home(A,X) / ~ ^C left homotopy
	The claim is there is a bijection
	[A,X] = Hom hole (A,X)
	natural wit morphisms of ho (l,") × ho (l,).
	· morphisms in the first case are mod left
	homotopy, and in the second case are mod weak equivalences!
Cor 2-2-18	Define n(Ccr) as the category with
	- objects are fibrant-capibrant objects on l
	$Hom_{\pi(C_{ct})}(A, \chi) = [A, \chi]$
	Then
	$\pi(l_{cF}) \simeq ho(l)$
	is a (canonical) equiv. al categories.
	$ \rightarrow ho(l_c) = ho(l) $
	$ho(l_{f}) = ho(l)$ $\pi(l_{cf}) = ho(l)$

2.3 Derived functors How compatible are functors with Localization? The tool for "approximating" functors like this is Kan extensions L - model cotegory $\gamma: L \longrightarrow hold) - houlisation$ Pel 2.3.1 F: L-> D - a functor left derived functor $LF: hold) \longrightarrow D$ together with a_{x} : LF(Y(X)) \longrightarrow F(X) such that LF is a right Kan extension along Y. Qually for right derived functors. C F D r Ub RF hole) $e \xrightarrow{F} D$ r To /LF Q: Do these exist? Ly general theory on existence of Kan extensions What do they look like?

Consider the situation of Ken Brown's lemma.

$$F: (\rightarrow)$$

sends weak equivalences between calibrant
objects to komorphisms.
By the universal property, $\exists!$
 $F_{c}: ho(l) \rightarrow D$
For each $X \in C$, pick
 $a'_{x}: QX \xrightarrow{even} X$,
(which exists since $\emptyset \rightarrow X$ must factor
as $\emptyset \xrightarrow{e(0)} QX \xrightarrow{even} Fix$)
so this is a map $C \rightarrow C_{c}$
 $\longrightarrow \exists!$ functor $Q: holl) \rightarrow holl(c)$
Define $LF:$
 $LF(Y) = F_{c}LQ(Y)$
(3!) $a_{x}: LF(S(X)) \rightarrow F(X)$
Prop In the above situation, LF is a left
2-3-3 derived functor of F .

Cor
2.3.4 In the above Situation, for any functor

$$G: D \rightarrow E$$

the pair $(G: LF, Ga)$ is a left derived
functor of GF .
 $C \xrightarrow{F} D \xrightarrow{G} E$
 $Y \xrightarrow{I} \int_{LF} \int_{C} \int_{$

Prop	(well behaved-ness of total derived functors "
2.3.ь	4 e Fre' F' ("
	both prescrue cofibrant objects and Wn Will, then
	$holl) \xrightarrow{LF} holl') \xrightarrow{LF'} holl")$
	and ho(c) $\xrightarrow{L(FbF)}$ ho(c")
	are isomorphic on objects XENOLC).
	What do adjunctions look like on the level of localization?
	Lo Ane they Still adjunctions?
Pe 2.3.7	Quiller adjunctions
•	An adjunction between model categories
	$F: \mathcal{L} \xrightarrow{\sim} \mathcal{L}': G$
	that descends to an adjunction
	LF: hole) = hole'): RG

Thm	19 F proserves cofibrutions, G preserves
	fibrations, then (I,61) is a Quillen
	adjunction.
	L'In the above situation)
Rmk	("chuality" of fibrations / ufibrations accross)
2.3.8	adjunctions
	TFAE:
	- (F, b) is a Quiller adjunction
	- F preserves colib. and Whical. - Gr preserves fib and White
	- Gr preserves fib and WAFib
Why?	Nonotopy- Want to get analogs of useful functors.
Dcf	Projective model structure Lon CI := Hom LI, C)
	Il is even then E -> G is a
	If it exists, then F -> G is a fibration if Fi -> G; is a libration for all i FI.
	These don't necessarily have to exist.
	These don't necessarily have to exist. So when do they exist?

I is a small, discrete category Éx I is free cartegory generated by 0 -> 1 Ex (Prop 23.11) ~> ZI is the arrow contegory of l t has small columits ξx I is small, well-ordered, initial object 1 Prop) 2 3.13 €¥ A projective resolution of a main complex Q is a cofibrant resolution & Pa-a wrt the projective model structure an chain complexes. Why are these called projective model? - Whenever one exists, R anstant diagram is a Quiller adjunction.

Peop	Submanse
2.3.15	Suppose · CI has proj. model structure · C has I-indexed colimits
	IF C R cofibrant f: X -> Y C R cofibrant
	$f, X \longrightarrow Y$
	and every
	$f_i: X_i \longrightarrow Y_i \in W$,
	then
•	$\lim_{T} X \longrightarrow \lim_{T} Y \in W.$
Lor	Spefic cases of these
2.3.16 -	Spefic cases of these
Cor 1.3.16 - 1.3.19	Spefic cases of these
2.3.16 -	Spefic cases of these
2.3.16 -	Spefic cases of these
2.3.16 -	Spefic cases of these
2.3.16 -	Spefic cases of these
2.3.16 -	Spefic cases of these
2.3.16 -	Spefic cases of these
2.3.16 -	Spefic cases of these
2.3.16 -	Spefic cases of these
2.3.16 -	Spefic cases of these
2.3.16 -	Spefic cases of these
2.3.16 -	Spefic cases of these

These sometimes coincide w/ ordinary colimits.
- If I has I-indexed colimits, has a
- If C has I-indexed colimits, has a projective model structure, and F
is cofibrant, then
Lim F T
· · · · · · · · · · · · · · · · · · ·
is the homotopy colimit of F
homotopy lo lortesiun / homotopy pushout
$\chi \xrightarrow{z} \chi'$
۲
$\gamma \xrightarrow{8} \gamma'$
-
where Y' is homotopy alimit of Yex->X'
(another instance of regular and homotopy
(another instance of regular and homotopy columits coinciding)
If a pushout is between collibrant objects,
with optionations, then it is also a homotopy
Pushout.

Ргор 2.3.26	Any commutative square
2.3.26	
	$\begin{array}{ccc} \chi & \xrightarrow{-\infty} & \chi' \\ & & & & & \\ & & & & & \\ & & & & & & $
	€↑ ∫₽,
	$\gamma \longrightarrow \gamma'$
	in which z, y c W is homotopy cocartesian.
1 -	
Car 2.3, 23	In the above square, if it is a Cartesian, felsf, X and X' cofibrant, then it is
	homotopy colortesian.